Properties

Label 1.11_61.5t1.4c4
Dimension 1
Group $C_5$
Conductor $ 11 \cdot 61 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_5$
Conductor:$671= 11 \cdot 61 $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 268 x^{3} - 349 x^{2} + 7483 x + 13067 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_5$
Parity: Even
Corresponding Dirichlet character: \(\chi_{671}(119,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 1 + 23\cdot 31 + 22\cdot 31^{2} + 31^{3} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 5 + 29\cdot 31 + 3\cdot 31^{2} + 8\cdot 31^{3} + 20\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 7 + 10\cdot 31 + 19\cdot 31^{2} + 2\cdot 31^{3} + 8\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 22 + 17\cdot 31 + 27\cdot 31^{2} + 28\cdot 31^{3} + 24\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 28 + 12\cdot 31 + 19\cdot 31^{2} + 20\cdot 31^{3} + 8\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,5,3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$1$
$1$$5$$(1,2,5,3,4)$$-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$
$1$$5$$(1,5,4,2,3)$$\zeta_{5}^{3}$
$1$$5$$(1,3,2,4,5)$$\zeta_{5}^{2}$
$1$$5$$(1,4,3,5,2)$$\zeta_{5}$
The blue line marks the conjugacy class containing complex conjugation.