Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 109 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 7 + 88\cdot 109 + 32\cdot 109^{2} + 26\cdot 109^{3} + 33\cdot 109^{4} + 70\cdot 109^{5} +O\left(109^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 13 + 21\cdot 109 + 80\cdot 109^{2} + 8\cdot 109^{3} + 40\cdot 109^{4} + 75\cdot 109^{5} +O\left(109^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 30 + 94\cdot 109 + 14\cdot 109^{2} + 78\cdot 109^{3} + 68\cdot 109^{4} + 79\cdot 109^{5} +O\left(109^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 75 + 5\cdot 109 + 17\cdot 109^{2} + 16\cdot 109^{3} + 32\cdot 109^{4} + 12\cdot 109^{5} +O\left(109^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 94 + 8\cdot 109 + 73\cdot 109^{2} + 88\cdot 109^{3} + 43\cdot 109^{4} + 89\cdot 109^{5} +O\left(109^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,3,5,2,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character values |
| | |
$c1$ |
$c2$ |
$c3$ |
$c4$ |
| $1$ |
$1$ |
$()$ |
$1$ |
$1$ |
$1$ |
$1$ |
| $1$ |
$5$ |
$(1,3,5,2,4)$ |
$\zeta_{5}$ |
$\zeta_{5}^{2}$ |
$\zeta_{5}^{3}$ |
$-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ |
| $1$ |
$5$ |
$(1,5,4,3,2)$ |
$\zeta_{5}^{2}$ |
$-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ |
$\zeta_{5}$ |
$\zeta_{5}^{3}$ |
| $1$ |
$5$ |
$(1,2,3,4,5)$ |
$\zeta_{5}^{3}$ |
$\zeta_{5}$ |
$-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ |
$\zeta_{5}^{2}$ |
| $1$ |
$5$ |
$(1,4,2,5,3)$ |
$-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ |
$\zeta_{5}^{3}$ |
$\zeta_{5}^{2}$ |
$\zeta_{5}$ |
The blue line marks the conjugacy class containing complex conjugation.