Properties

Label 1.11_41.5t1.2c3
Dimension 1
Group $C_5$
Conductor $ 11 \cdot 41 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_5$
Conductor:$451= 11 \cdot 41 $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 180 x^{3} - 415 x^{2} + 1169 x + 2551 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_5$
Parity: Even
Corresponding Dirichlet character: \(\chi_{451}(379,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 7 + 16\cdot 59 + 4\cdot 59^{2} + 5\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 + 14\cdot 59 + 17\cdot 59^{2} + 49\cdot 59^{3} + 14\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 16 + 10\cdot 59 + 17\cdot 59^{2} + 11\cdot 59^{3} + 32\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 27 + 26\cdot 59 + 37\cdot 59^{2} + 39\cdot 59^{3} +O\left(59^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 55 + 50\cdot 59 + 41\cdot 59^{2} + 17\cdot 59^{3} + 6\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,3,5,2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$1$
$1$$5$$(1,3,5,2,4)$$\zeta_{5}^{3}$
$1$$5$$(1,5,4,3,2)$$\zeta_{5}$
$1$$5$$(1,2,3,4,5)$$-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$
$1$$5$$(1,4,2,5,3)$$\zeta_{5}^{2}$
The blue line marks the conjugacy class containing complex conjugation.