Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 101 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 32 + 45\cdot 101 + 21\cdot 101^{2} + 21\cdot 101^{3} + 74\cdot 101^{4} +O\left(101^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 42 + 53\cdot 101 + 94\cdot 101^{2} + 47\cdot 101^{3} + 88\cdot 101^{4} +O\left(101^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 63 + 81\cdot 101 + 46\cdot 101^{2} + 89\cdot 101^{3} + 17\cdot 101^{4} +O\left(101^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 70 + 17\cdot 101 + 89\cdot 101^{2} + 2\cdot 101^{3} + 90\cdot 101^{4} +O\left(101^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 97 + 3\cdot 101 + 51\cdot 101^{2} + 40\cdot 101^{3} + 32\cdot 101^{4} +O\left(101^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2,4,5,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $1$ |
| $1$ | $5$ | $(1,2,4,5,3)$ | $\zeta_{5}^{3}$ |
| $1$ | $5$ | $(1,4,3,2,5)$ | $\zeta_{5}$ |
| $1$ | $5$ | $(1,5,2,3,4)$ | $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ |
| $1$ | $5$ | $(1,3,5,4,2)$ | $\zeta_{5}^{2}$ |
The blue line marks the conjugacy class containing complex conjugation.