Properties

Label 1.11_41.5t1.1
Dimension 1
Group $C_5$
Conductor $ 11 \cdot 41 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_5$
Conductor:$451= 11 \cdot 41 $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 180 x^{3} + 1389 x^{2} - 3341 x + 2551 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 101 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 32 + 45\cdot 101 + 21\cdot 101^{2} + 21\cdot 101^{3} + 74\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 42 + 53\cdot 101 + 94\cdot 101^{2} + 47\cdot 101^{3} + 88\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 63 + 81\cdot 101 + 46\cdot 101^{2} + 89\cdot 101^{3} + 17\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 70 + 17\cdot 101 + 89\cdot 101^{2} + 2\cdot 101^{3} + 90\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 97 + 3\cdot 101 + 51\cdot 101^{2} + 40\cdot 101^{3} + 32\cdot 101^{4} +O\left(101^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,4,5,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$ $c2$ $c3$ $c4$
$1$ $1$ $()$ $1$ $1$ $1$ $1$
$1$ $5$ $(1,2,4,5,3)$ $\zeta_{5}$ $\zeta_{5}^{2}$ $\zeta_{5}^{3}$ $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$
$1$ $5$ $(1,4,3,2,5)$ $\zeta_{5}^{2}$ $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ $\zeta_{5}$ $\zeta_{5}^{3}$
$1$ $5$ $(1,5,2,3,4)$ $\zeta_{5}^{3}$ $\zeta_{5}$ $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ $\zeta_{5}^{2}$
$1$ $5$ $(1,3,5,4,2)$ $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ $\zeta_{5}^{3}$ $\zeta_{5}^{2}$ $\zeta_{5}$
The blue line marks the conjugacy class containing complex conjugation.