Properties

Label 1.11_31.6t1.2c2
Dimension 1
Group $C_6$
Conductor $ 11 \cdot 31 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$341= 11 \cdot 31 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 12 x^{4} - x^{3} + 132 x^{2} + 127 x + 467 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{341}(87,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 19 a + 6 + \left(26 a + 24\right)\cdot 29 + \left(11 a + 7\right)\cdot 29^{2} + \left(20 a + 7\right)\cdot 29^{3} + \left(20 a + 9\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 19 a + 4 + \left(26 a + 12\right)\cdot 29 + \left(11 a + 23\right)\cdot 29^{2} + \left(20 a + 23\right)\cdot 29^{3} + 20 a\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 10 a + 12 + \left(2 a + 10\right)\cdot 29 + \left(17 a + 27\right)\cdot 29^{2} + \left(8 a + 26\right)\cdot 29^{3} + \left(8 a + 25\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 19 a + 22 + \left(26 a + 9\right)\cdot 29 + \left(11 a + 6\right)\cdot 29^{2} + \left(20 a + 22\right)\cdot 29^{3} + \left(20 a + 24\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 10 a + 14 + \left(2 a + 22\right)\cdot 29 + \left(17 a + 11\right)\cdot 29^{2} + \left(8 a + 10\right)\cdot 29^{3} + \left(8 a + 5\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 1 + \left(2 a + 8\right)\cdot 29 + \left(17 a + 10\right)\cdot 29^{2} + \left(8 a + 25\right)\cdot 29^{3} + \left(8 a + 20\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,2)(3,5,6)$
$(1,5)(2,3)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,5)(2,3)(4,6)$$-1$
$1$$3$$(1,4,2)(3,5,6)$$\zeta_{3}$
$1$$3$$(1,2,4)(3,6,5)$$-\zeta_{3} - 1$
$1$$6$$(1,6,2,5,4,3)$$-\zeta_{3}$
$1$$6$$(1,3,4,5,2,6)$$\zeta_{3} + 1$
The blue line marks the conjugacy class containing complex conjugation.