Properties

Label 1.11_31.5t1.4c4
Dimension 1
Group $C_5$
Conductor $ 11 \cdot 31 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_5$
Conductor:$341= 11 \cdot 31 $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 136 x^{3} + 641 x^{2} - 371 x - 67 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_5$
Parity: Even
Corresponding Dirichlet character: \(\chi_{341}(159,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 13\cdot 67 + 61\cdot 67^{2} + 54\cdot 67^{3} + 26\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 1 + 44\cdot 67 + 59\cdot 67^{2} + 11\cdot 67^{3} + 43\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 25 + 43\cdot 67 + 27\cdot 67^{2} + 31\cdot 67^{3} + 15\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 53 + 48\cdot 67 + 37\cdot 67^{2} + 30\cdot 67^{3} + 18\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 56 + 51\cdot 67 + 14\cdot 67^{2} + 5\cdot 67^{3} + 30\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,3,5,4,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$1$
$1$$5$$(1,3,5,4,2)$$-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$
$1$$5$$(1,5,2,3,4)$$\zeta_{5}^{3}$
$1$$5$$(1,4,3,2,5)$$\zeta_{5}^{2}$
$1$$5$$(1,2,4,5,3)$$\zeta_{5}$
The blue line marks the conjugacy class containing complex conjugation.