Properties

Label 1.11_31.5t1.1c4
Dimension 1
Group $C_5$
Conductor $ 11 \cdot 31 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_5$
Conductor:$341= 11 \cdot 31 $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 136 x^{3} + 300 x^{2} + 2016 x - 3136 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_5$
Parity: Even
Corresponding Dirichlet character: \(\chi_{341}(157,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 7 + 61\cdot 67 + 67^{2} + 16\cdot 67^{3} + 53\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 + 18\cdot 67 + 12\cdot 67^{2} + 40\cdot 67^{3} + 5\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 22 + 59\cdot 67 + 14\cdot 67^{2} + 65\cdot 67^{3} + 21\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 45 + 61\cdot 67 + 22\cdot 67^{2} + 18\cdot 67^{3} + 3\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 47 + 15\cdot 67^{2} + 61\cdot 67^{3} + 49\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,4,5,2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$1$
$1$$5$$(1,4,5,2,3)$$-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$
$1$$5$$(1,5,3,4,2)$$\zeta_{5}^{3}$
$1$$5$$(1,2,4,3,5)$$\zeta_{5}^{2}$
$1$$5$$(1,3,2,5,4)$$\zeta_{5}$
The blue line marks the conjugacy class containing complex conjugation.