Properties

Label 1.11_31.10t1.1c2
Dimension 1
Group $C_{10}$
Conductor $ 11 \cdot 31 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_{10}$
Conductor:$341= 11 \cdot 31 $
Artin number field: Splitting field of $f= x^{10} - 3 x^{9} + 34 x^{8} - 76 x^{7} + 570 x^{6} - 920 x^{5} + 5450 x^{4} - 5733 x^{3} + 29914 x^{2} - 15269 x + 76231 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_{10}$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{341}(185,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{5} + 5 x + 17 $
Roots:
$r_{ 1 }$ $=$ $ 3 a^{4} + 16 a^{3} + 8 a^{2} + 3 a + 3 + \left(5 a^{4} + 17 a^{3} + 16 a^{2} + 2 a\right)\cdot 19 + \left(17 a^{4} + 14 a^{3} + 5 a^{2} + 11 a + 14\right)\cdot 19^{2} + \left(6 a^{4} + 15 a^{3} + 6 a^{2} + 8 a + 15\right)\cdot 19^{3} + \left(4 a^{4} + a^{3} + 17 a^{2} + a + 1\right)\cdot 19^{4} + \left(10 a^{4} + 6 a^{3} + 4 a^{2} + 11 a + 7\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 3 a^{4} + 16 a^{3} + 8 a^{2} + 3 a + 14 + \left(5 a^{4} + 17 a^{3} + 16 a^{2} + 2 a + 10\right)\cdot 19 + \left(17 a^{4} + 14 a^{3} + 5 a^{2} + 11 a + 2\right)\cdot 19^{2} + \left(6 a^{4} + 15 a^{3} + 6 a^{2} + 8 a + 9\right)\cdot 19^{3} + \left(4 a^{4} + a^{3} + 17 a^{2} + a + 6\right)\cdot 19^{4} + \left(10 a^{4} + 6 a^{3} + 4 a^{2} + 11 a + 6\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 6 a^{4} + 5 a^{3} + 10 a^{2} + 7 + \left(15 a^{4} + 7 a^{3} + 8 a^{2} + 12 a + 13\right)\cdot 19 + \left(a^{4} + 8 a^{3} + a^{2} + 3 a + 16\right)\cdot 19^{2} + \left(6 a^{4} + 11 a^{3} + 6 a^{2} + 18 a + 5\right)\cdot 19^{3} + \left(17 a^{3} + 2 a^{2} + 5 a + 9\right)\cdot 19^{4} + \left(15 a^{4} + 16 a^{3} + 3 a^{2} + 8 a + 6\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 6 a^{4} + 5 a^{3} + 10 a^{2} + 15 + \left(15 a^{4} + 7 a^{3} + 8 a^{2} + 12 a + 2\right)\cdot 19 + \left(a^{4} + 8 a^{3} + a^{2} + 3 a + 9\right)\cdot 19^{2} + \left(6 a^{4} + 11 a^{3} + 6 a^{2} + 18 a + 12\right)\cdot 19^{3} + \left(17 a^{3} + 2 a^{2} + 5 a + 4\right)\cdot 19^{4} + \left(15 a^{4} + 16 a^{3} + 3 a^{2} + 8 a + 7\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 8 a^{4} + 10 a^{3} + 4 a^{2} + 18 a + 4 + \left(15 a^{4} + 8 a^{3} + 9 a^{2} + 5 a + 3\right)\cdot 19 + \left(13 a^{4} + 8 a^{3} + a^{2} + 16 a\right)\cdot 19^{2} + \left(3 a^{4} + 18 a^{3} + 14 a^{2} + 10 a + 3\right)\cdot 19^{3} + \left(4 a^{4} + 6 a^{3} + 15 a^{2} + 13 a + 1\right)\cdot 19^{4} + \left(11 a^{4} + a^{3} + a^{2} + 12 a + 11\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 8 a^{4} + 10 a^{3} + 4 a^{2} + 18 a + 15 + \left(15 a^{4} + 8 a^{3} + 9 a^{2} + 5 a + 13\right)\cdot 19 + \left(13 a^{4} + 8 a^{3} + a^{2} + 16 a + 7\right)\cdot 19^{2} + \left(3 a^{4} + 18 a^{3} + 14 a^{2} + 10 a + 15\right)\cdot 19^{3} + \left(4 a^{4} + 6 a^{3} + 15 a^{2} + 13 a + 5\right)\cdot 19^{4} + \left(11 a^{4} + a^{3} + a^{2} + 12 a + 10\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 10 a^{4} + 13 a^{3} + 10 a^{2} + 9 a + 4 + \left(10 a^{4} + 8 a^{3} + 2 a^{2} + 4 a + 13\right)\cdot 19 + \left(17 a^{4} + a^{3} + 15 a^{2} + 2 a + 3\right)\cdot 19^{2} + \left(6 a^{4} + 18 a^{2} + 17 a + 9\right)\cdot 19^{3} + \left(14 a^{4} + 7 a^{3} + 13 a^{2} + 10 a + 8\right)\cdot 19^{4} + \left(14 a^{4} + 4 a^{3} + 5 a^{2} + 5\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 10 a^{4} + 13 a^{3} + 10 a^{2} + 9 a + 12 + \left(10 a^{4} + 8 a^{3} + 2 a^{2} + 4 a + 2\right)\cdot 19 + \left(17 a^{4} + a^{3} + 15 a^{2} + 2 a + 15\right)\cdot 19^{2} + \left(6 a^{4} + 18 a^{2} + 17 a + 15\right)\cdot 19^{3} + \left(14 a^{4} + 7 a^{3} + 13 a^{2} + 10 a + 3\right)\cdot 19^{4} + \left(14 a^{4} + 4 a^{3} + 5 a^{2} + 6\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 9 }$ $=$ $ 11 a^{4} + 13 a^{3} + 6 a^{2} + 8 a + 8 + \left(10 a^{4} + 14 a^{3} + a^{2} + 13 a + 13\right)\cdot 19 + \left(6 a^{4} + 4 a^{3} + 14 a^{2} + 4 a + 16\right)\cdot 19^{2} + \left(14 a^{4} + 11 a^{3} + 11 a^{2} + 2 a\right)\cdot 19^{3} + \left(14 a^{4} + 4 a^{3} + 7 a^{2} + 6 a + 10\right)\cdot 19^{4} + \left(5 a^{4} + 9 a^{3} + 3 a^{2} + 5 a + 7\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 10 }$ $=$ $ 11 a^{4} + 13 a^{3} + 6 a^{2} + 8 a + 16 + \left(10 a^{4} + 14 a^{3} + a^{2} + 13 a + 2\right)\cdot 19 + \left(6 a^{4} + 4 a^{3} + 14 a^{2} + 4 a + 9\right)\cdot 19^{2} + \left(14 a^{4} + 11 a^{3} + 11 a^{2} + 2 a + 7\right)\cdot 19^{3} + \left(14 a^{4} + 4 a^{3} + 7 a^{2} + 6 a + 5\right)\cdot 19^{4} + \left(5 a^{4} + 9 a^{3} + 3 a^{2} + 5 a + 8\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 10 }$

Cycle notation
$(1,3,8,9,5,2,4,7,10,6)$
$(1,2)(3,4)(5,6)(7,8)(9,10)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 10 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,2)(3,4)(5,6)(7,8)(9,10)$$-1$
$1$$5$$(1,8,5,4,10)(2,7,6,3,9)$$\zeta_{5}^{2}$
$1$$5$$(1,5,10,8,4)(2,6,9,7,3)$$-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$
$1$$5$$(1,4,8,10,5)(2,3,7,9,6)$$\zeta_{5}$
$1$$5$$(1,10,4,5,8)(2,9,3,6,7)$$\zeta_{5}^{3}$
$1$$10$$(1,3,8,9,5,2,4,7,10,6)$$-\zeta_{5}$
$1$$10$$(1,9,4,6,8,2,10,3,5,7)$$-\zeta_{5}^{3}$
$1$$10$$(1,7,5,3,10,2,8,6,4,9)$$-\zeta_{5}^{2}$
$1$$10$$(1,6,10,7,4,2,5,9,8,3)$$\zeta_{5}^{3} + \zeta_{5}^{2} + \zeta_{5} + 1$
The blue line marks the conjugacy class containing complex conjugation.