Properties

Label 1.11_19.6t1.2c2
Dimension 1
Group $C_6$
Conductor $ 11 \cdot 19 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$209= 11 \cdot 19 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 4 x^{4} - 7 x^{3} + 67 x^{2} + 122 x + 229 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{209}(197,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 83 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 83 }$: $ x^{2} + 82 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 76 a + 68 + \left(39 a + 13\right)\cdot 83 + \left(57 a + 69\right)\cdot 83^{2} + \left(68 a + 71\right)\cdot 83^{3} + \left(17 a + 45\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 76 a + 47 + \left(39 a + 12\right)\cdot 83 + \left(57 a + 38\right)\cdot 83^{2} + \left(68 a + 2\right)\cdot 83^{3} + \left(17 a + 45\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 7 a + 40 + \left(43 a + 59\right)\cdot 83 + \left(25 a + 55\right)\cdot 83^{2} + \left(14 a + 13\right)\cdot 83^{3} + \left(65 a + 77\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 7 a + 55 + \left(43 a + 74\right)\cdot 83 + \left(25 a + 49\right)\cdot 83^{2} + \left(14 a + 44\right)\cdot 83^{3} + \left(65 a + 17\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 76 a + 62 + \left(39 a + 27\right)\cdot 83 + \left(57 a + 32\right)\cdot 83^{2} + \left(68 a + 33\right)\cdot 83^{3} + \left(17 a + 68\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 7 a + 61 + \left(43 a + 60\right)\cdot 83 + \left(25 a + 3\right)\cdot 83^{2} + 14 a\cdot 83^{3} + \left(65 a + 78\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6)(2,3)(4,5)$
$(1,2,5)(3,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,6)(2,3)(4,5)$$-1$
$1$$3$$(1,2,5)(3,4,6)$$-\zeta_{3} - 1$
$1$$3$$(1,5,2)(3,6,4)$$\zeta_{3}$
$1$$6$$(1,3,5,6,2,4)$$\zeta_{3} + 1$
$1$$6$$(1,4,2,6,5,3)$$-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.