Properties

Label 1.11_17.8t1.1
Dimension 1
Group $C_8$
Conductor $ 11 \cdot 17 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_8$
Conductor:$187= 11 \cdot 17 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 44 x^{6} - 45 x^{5} + 423 x^{4} - 877 x^{3} + 1826 x^{2} - 3515 x + 4591 $ over $\Q$
Size of Galois orbit: 4
Smallest containing permutation representation: $C_8$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 137 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 12 + 41\cdot 137 + 101\cdot 137^{2} + 69\cdot 137^{3} + 38\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 19 + 79\cdot 137 + 34\cdot 137^{2} + 124\cdot 137^{3} + 54\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 66 + 32\cdot 137 + 113\cdot 137^{2} + 89\cdot 137^{3} + 86\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 72 + 73\cdot 137 + 36\cdot 137^{2} + 119\cdot 137^{3} + 94\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 75 + 115\cdot 137 + 119\cdot 137^{2} + 84\cdot 137^{3} + 39\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 94 + 91\cdot 137 + 95\cdot 137^{2} + 34\cdot 137^{3} + 53\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 105 + 55\cdot 137 + 110\cdot 137^{2} + 104\cdot 137^{3} + 70\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 106 + 58\cdot 137 + 73\cdot 137^{2} + 57\cdot 137^{3} + 109\cdot 137^{4} +O\left(137^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8,5,7)(2,6,3,4)$
$(1,5)(2,3)(4,6)(7,8)$
$(1,3,7,6,5,2,8,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$ $c3$ $c4$
$1$ $1$ $()$ $1$ $1$ $1$ $1$
$1$ $2$ $(1,5)(2,3)(4,6)(7,8)$ $-1$ $-1$ $-1$ $-1$
$1$ $4$ $(1,7,5,8)(2,4,3,6)$ $\zeta_{8}^{2}$ $-\zeta_{8}^{2}$ $\zeta_{8}^{2}$ $-\zeta_{8}^{2}$
$1$ $4$ $(1,8,5,7)(2,6,3,4)$ $-\zeta_{8}^{2}$ $\zeta_{8}^{2}$ $-\zeta_{8}^{2}$ $\zeta_{8}^{2}$
$1$ $8$ $(1,3,7,6,5,2,8,4)$ $\zeta_{8}$ $\zeta_{8}^{3}$ $-\zeta_{8}$ $-\zeta_{8}^{3}$
$1$ $8$ $(1,6,8,3,5,4,7,2)$ $\zeta_{8}^{3}$ $\zeta_{8}$ $-\zeta_{8}^{3}$ $-\zeta_{8}$
$1$ $8$ $(1,2,7,4,5,3,8,6)$ $-\zeta_{8}$ $-\zeta_{8}^{3}$ $\zeta_{8}$ $\zeta_{8}^{3}$
$1$ $8$ $(1,4,8,2,5,6,7,3)$ $-\zeta_{8}^{3}$ $-\zeta_{8}$ $\zeta_{8}^{3}$ $\zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.