Properties

Label 1.11_13.6t1.1c1
Dimension 1
Group $C_6$
Conductor $ 11 \cdot 13 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:$143= 11 \cdot 13 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 5 x^{3} + 39 x^{2} - 74 x + 155 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6$
Parity: Odd
Corresponding Dirichlet character: \(\chi_{143}(87,\cdot)\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 72 a + 14 + \left(59 a + 12\right)\cdot 73 + \left(31 a + 12\right)\cdot 73^{2} + \left(37 a + 21\right)\cdot 73^{3} + \left(62 a + 30\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 72 a + 9 + \left(59 a + 65\right)\cdot 73 + \left(31 a + 48\right)\cdot 73^{2} + \left(37 a + 53\right)\cdot 73^{3} + \left(62 a + 43\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ a + 11 + \left(13 a + 47\right)\cdot 73 + \left(41 a + 47\right)\cdot 73^{2} + \left(35 a + 28\right)\cdot 73^{3} + \left(10 a + 34\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ a + 52 + \left(13 a + 14\right)\cdot 73 + \left(41 a + 67\right)\cdot 73^{2} + \left(35 a + 30\right)\cdot 73^{3} + \left(10 a + 33\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ a + 6 + \left(13 a + 27\right)\cdot 73 + \left(41 a + 11\right)\cdot 73^{2} + \left(35 a + 61\right)\cdot 73^{3} + \left(10 a + 47\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 72 a + 55 + \left(59 a + 52\right)\cdot 73 + \left(31 a + 31\right)\cdot 73^{2} + \left(37 a + 23\right)\cdot 73^{3} + \left(62 a + 29\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6,2)(3,4,5)$
$(1,3)(2,5)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,3)(2,5)(4,6)$$-1$
$1$$3$$(1,6,2)(3,4,5)$$-\zeta_{3} - 1$
$1$$3$$(1,2,6)(3,5,4)$$\zeta_{3}$
$1$$6$$(1,4,2,3,6,5)$$\zeta_{3} + 1$
$1$$6$$(1,5,6,3,2,4)$$-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.