Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 72 a + 14 + \left(59 a + 12\right)\cdot 73 + \left(31 a + 12\right)\cdot 73^{2} + \left(37 a + 21\right)\cdot 73^{3} + \left(62 a + 30\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 72 a + 9 + \left(59 a + 65\right)\cdot 73 + \left(31 a + 48\right)\cdot 73^{2} + \left(37 a + 53\right)\cdot 73^{3} + \left(62 a + 43\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ a + 11 + \left(13 a + 47\right)\cdot 73 + \left(41 a + 47\right)\cdot 73^{2} + \left(35 a + 28\right)\cdot 73^{3} + \left(10 a + 34\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ a + 52 + \left(13 a + 14\right)\cdot 73 + \left(41 a + 67\right)\cdot 73^{2} + \left(35 a + 30\right)\cdot 73^{3} + \left(10 a + 33\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ a + 6 + \left(13 a + 27\right)\cdot 73 + \left(41 a + 11\right)\cdot 73^{2} + \left(35 a + 61\right)\cdot 73^{3} + \left(10 a + 47\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 72 a + 55 + \left(59 a + 52\right)\cdot 73 + \left(31 a + 31\right)\cdot 73^{2} + \left(37 a + 23\right)\cdot 73^{3} + \left(62 a + 29\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,6,2)(3,4,5)$ |
| $(1,3)(2,5)(4,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$1$ |
$1$ |
| $1$ |
$2$ |
$(1,3)(2,5)(4,6)$ |
$-1$ |
$-1$ |
| $1$ |
$3$ |
$(1,6,2)(3,4,5)$ |
$-\zeta_{3} - 1$ |
$\zeta_{3}$ |
| $1$ |
$3$ |
$(1,2,6)(3,5,4)$ |
$\zeta_{3}$ |
$-\zeta_{3} - 1$ |
| $1$ |
$6$ |
$(1,4,2,3,6,5)$ |
$\zeta_{3} + 1$ |
$-\zeta_{3}$ |
| $1$ |
$6$ |
$(1,5,6,3,2,4)$ |
$-\zeta_{3}$ |
$\zeta_{3} + 1$ |
The blue line marks the conjugacy class containing complex conjugation.