Properties

Label 1.117.6t1.c.a
Dimension $1$
Group $C_6$
Conductor $117$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $1$
Group: $C_6$
Conductor: \(117\)\(\medspace = 3^{2} \cdot 13 \)
Artin field: Galois closure of 6.6.14414517.1
Galois orbit size: $2$
Smallest permutation container: $C_6$
Parity: even
Dirichlet character: \(\chi_{117}(103,\cdot)\)
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Defining polynomial

$f(x)$$=$ \( x^{6} - 3x^{5} - 12x^{4} + 27x^{3} + 21x^{2} - 48x + 17 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: \( x^{2} + 18x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 16 a + 12 + \left(14 a + 1\right)\cdot 19 + \left(6 a + 12\right)\cdot 19^{2} + \left(a + 1\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 16 a + 14 + \left(14 a + 14\right)\cdot 19 + \left(6 a + 9\right)\cdot 19^{2} + 14\cdot 19^{3} + \left(a + 15\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 3 a + 11 + \left(4 a + 13\right)\cdot 19 + \left(12 a + 1\right)\cdot 19^{2} + \left(18 a + 8\right)\cdot 19^{3} + \left(17 a + 16\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 3 a + 9 + 4 a\cdot 19 + \left(12 a + 4\right)\cdot 19^{2} + \left(18 a + 13\right)\cdot 19^{3} + \left(17 a + 1\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 16 a + 18 + \left(14 a + 13\right)\cdot 19 + \left(6 a + 18\right)\cdot 19^{2} + 3\cdot 19^{3} + \left(a + 1\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 3 a + 15 + \left(4 a + 12\right)\cdot 19 + \left(12 a + 10\right)\cdot 19^{2} + \left(18 a + 16\right)\cdot 19^{3} + \left(17 a + 1\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,5)(3,6,4)$
$(1,4)(2,3)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$1$
$1$$2$$(1,4)(2,3)(5,6)$$-1$
$1$$3$$(1,2,5)(3,6,4)$$-\zeta_{3} - 1$
$1$$3$$(1,5,2)(3,4,6)$$\zeta_{3}$
$1$$6$$(1,3,5,4,2,6)$$\zeta_{3} + 1$
$1$$6$$(1,6,2,4,5,3)$$-\zeta_{3}$