Properties

Label 1.1148.6t1.a.a
Dimension $1$
Group $C_6$
Conductor $1148$
Root number not computed
Indicator $0$

Related objects

Learn more

Basic invariants

Dimension: $1$
Group: $C_6$
Conductor: \(1148\)\(\medspace = 2^{2} \cdot 7 \cdot 41 \)
Artin field: 6.0.10590676544.4
Galois orbit size: $2$
Smallest permutation container: $C_6$
Parity: odd
Dirichlet character: \(\chi_{1148}(655,\cdot)\)
Projective image: $C_1$
Projective field: \(\Q\)

Defining polynomial

$f(x)$$=$\(x^{6} - 2 x^{5} + 120 x^{4} - 158 x^{3} + 5127 x^{2} - 3448 x + 77573\)  Toggle raw display.

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: \(x^{2} + 12 x + 2\)  Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 4 a + 3 + \left(6 a + 9\right)\cdot 13 + \left(a + 12\right)\cdot 13^{2} + 8\cdot 13^{3} + \left(10 a + 7\right)\cdot 13^{4} +O(13^{5})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 9 a + 5 + \left(6 a + 3\right)\cdot 13 + \left(11 a + 9\right)\cdot 13^{2} + \left(12 a + 4\right)\cdot 13^{3} + \left(2 a + 3\right)\cdot 13^{4} +O(13^{5})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 4 a + 1 + \left(6 a + 1\right)\cdot 13 + \left(a + 1\right)\cdot 13^{2} + 6\cdot 13^{3} + \left(10 a + 6\right)\cdot 13^{4} +O(13^{5})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 9 a + 8 + \left(6 a + 1\right)\cdot 13 + \left(11 a + 8\right)\cdot 13^{2} + \left(12 a + 11\right)\cdot 13^{3} + \left(2 a + 6\right)\cdot 13^{4} +O(13^{5})\)  Toggle raw display
$r_{ 5 }$ $=$ \( 4 a + 4 + \left(6 a + 12\right)\cdot 13 + \left(a + 12\right)\cdot 13^{2} + 12\cdot 13^{3} + \left(10 a + 9\right)\cdot 13^{4} +O(13^{5})\)  Toggle raw display
$r_{ 6 }$ $=$ \( 9 a + 7 + \left(6 a + 11\right)\cdot 13 + \left(11 a + 7\right)\cdot 13^{2} + \left(12 a + 7\right)\cdot 13^{3} + \left(2 a + 4\right)\cdot 13^{4} +O(13^{5})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,3,6,5,2)$
$(1,6)(2,3)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,6)(2,3)(4,5)$$-1$
$1$$3$$(1,3,5)(2,4,6)$$\zeta_{3}$
$1$$3$$(1,5,3)(2,6,4)$$-\zeta_{3} - 1$
$1$$6$$(1,4,3,6,5,2)$$\zeta_{3} + 1$
$1$$6$$(1,2,5,6,3,4)$$-\zeta_{3}$

The blue line marks the conjugacy class containing complex conjugation.