Properties

Label 1.111.6t1.a
Dimension $1$
Group $C_6$
Conductor $111$
Indicator $0$

Related objects

Learn more

Basic invariants

Dimension:$1$
Group:$C_6$
Conductor:\(111\)\(\medspace = 3 \cdot 37 \)
Artin number field: Galois closure of 6.0.1872286839.1
Galois orbit size: $2$
Smallest permutation container: $C_6$
Parity: odd
Projective image: $C_1$
Projective field: \(\Q\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: \(x^{2} + 7 x + 2\)  Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 5 a + 3 + \left(6 a + 7\right)\cdot 11 + \left(2 a + 9\right)\cdot 11^{2} + \left(5 a + 8\right)\cdot 11^{3} + \left(6 a + 8\right)\cdot 11^{4} +O(11^{5})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 3 a + 5 + \left(6 a + 10\right)\cdot 11 + \left(10 a + 3\right)\cdot 11^{2} + \left(7 a + 5\right)\cdot 11^{3} + \left(2 a + 3\right)\cdot 11^{4} +O(11^{5})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 6 a + 1 + \left(4 a + 6\right)\cdot 11 + \left(8 a + 2\right)\cdot 11^{2} + \left(5 a + 5\right)\cdot 11^{3} + \left(4 a + 7\right)\cdot 11^{4} +O(11^{5})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 5 a + 5 + \left(a + 4\right)\cdot 11 + \left(7 a + 2\right)\cdot 11^{2} + \left(8 a + 7\right)\cdot 11^{3} +O(11^{5})\)  Toggle raw display
$r_{ 5 }$ $=$ \( 8 a + 6 + \left(4 a + 10\right)\cdot 11 + 6\cdot 11^{2} + \left(3 a + 4\right)\cdot 11^{3} + \left(8 a + 6\right)\cdot 11^{4} +O(11^{5})\)  Toggle raw display
$r_{ 6 }$ $=$ \( 6 a + 3 + \left(9 a + 5\right)\cdot 11 + \left(3 a + 7\right)\cdot 11^{2} + \left(2 a + 1\right)\cdot 11^{3} + \left(10 a + 6\right)\cdot 11^{4} +O(11^{5})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,5)(4,6)$
$(1,4,2)(3,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,3)(2,5)(4,6)$ $-1$ $-1$
$1$ $3$ $(1,4,2)(3,6,5)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$1$ $3$ $(1,2,4)(3,5,6)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$1$ $6$ $(1,6,2,3,4,5)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$1$ $6$ $(1,5,4,3,2,6)$ $\zeta_{3} + 1$ $-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.