Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 23 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 9 + 20\cdot 23 + 11\cdot 23^{2} + 6\cdot 23^{3} + 11\cdot 23^{4} +O\left(23^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 12 + 11\cdot 23^{2} + 17\cdot 23^{3} + 20\cdot 23^{4} +O\left(23^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 13 + 4\cdot 23 + 7\cdot 23^{2} + 14\cdot 23^{4} +O\left(23^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 17 + 3\cdot 23 + 4\cdot 23^{2} + 4\cdot 23^{3} + 21\cdot 23^{4} +O\left(23^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 19 + 16\cdot 23 + 11\cdot 23^{2} + 17\cdot 23^{3} + 23^{4} +O\left(23^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,5,2,4,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $1$ |
| $1$ | $5$ | $(1,5,2,4,3)$ | $\zeta_{5}^{2}$ |
| $1$ | $5$ | $(1,2,3,5,4)$ | $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ |
| $1$ | $5$ | $(1,4,5,3,2)$ | $\zeta_{5}$ |
| $1$ | $5$ | $(1,3,4,2,5)$ | $\zeta_{5}^{3}$ |
The blue line marks the conjugacy class containing complex conjugation.