Properties

Label 1.105.4t1.a
Dimension $1$
Group $C_4$
Conductor $105$
Indicator $0$

Related objects

Learn more

Basic invariants

Dimension:$1$
Group:$C_4$
Conductor:\(105\)\(\medspace = 3 \cdot 5 \cdot 7 \)
Artin number field: Galois closure of 4.0.55125.1
Galois orbit size: $2$
Smallest permutation container: $C_4$
Parity: odd
Projective image: $C_1$
Projective field: \(\Q\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 19 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 3 + 9\cdot 19^{2} + 7\cdot 19^{3} + 9\cdot 19^{4} +O(19^{5})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 11 + 14\cdot 19 + 18\cdot 19^{3} + 12\cdot 19^{4} +O(19^{5})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 12 + 16\cdot 19 + 18\cdot 19^{2} + 15\cdot 19^{3} + 19^{4} +O(19^{5})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 13 + 6\cdot 19 + 9\cdot 19^{2} + 15\cdot 19^{3} + 13\cdot 19^{4} +O(19^{5})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,3)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $1$ $1$
$1$ $2$ $(1,3)(2,4)$ $-1$ $-1$
$1$ $4$ $(1,2,3,4)$ $\zeta_{4}$ $-\zeta_{4}$
$1$ $4$ $(1,4,3,2)$ $-\zeta_{4}$ $\zeta_{4}$
The blue line marks the conjugacy class containing complex conjugation.