Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 13 a + 30 + \left(15 a + 6\right)\cdot 31 + \left(11 a + 30\right)\cdot 31^{2} + \left(16 a + 18\right)\cdot 31^{3} + \left(10 a + 4\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 27 a + 24 + \left(10 a + 10\right)\cdot 31 + \left(21 a + 6\right)\cdot 31^{2} + \left(17 a + 22\right)\cdot 31^{3} + \left(16 a + 21\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 4 a + 16 + \left(20 a + 5\right)\cdot 31 + \left(9 a + 7\right)\cdot 31^{2} + \left(13 a + 5\right)\cdot 31^{3} + \left(14 a + 6\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 18 a + 25 + \left(15 a + 24\right)\cdot 31 + \left(19 a + 6\right)\cdot 31^{2} + \left(14 a + 9\right)\cdot 31^{3} + \left(20 a + 9\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 17 a + 29 + \left(13 a + 1\right)\cdot 31 + \left(6 a + 6\right)\cdot 31^{2} + \left(21 a + 16\right)\cdot 31^{3} + \left(2 a + 2\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 14 a + 1 + \left(17 a + 12\right)\cdot 31 + \left(24 a + 5\right)\cdot 31^{2} + \left(9 a + 21\right)\cdot 31^{3} + \left(28 a + 17\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,4)(2,3)(5,6)$ |
| $(1,2,5,4,3,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$1$ |
$1$ |
| $1$ |
$2$ |
$(1,4)(2,3)(5,6)$ |
$-1$ |
$-1$ |
| $1$ |
$3$ |
$(1,5,3)(2,4,6)$ |
$\zeta_{3}$ |
$-\zeta_{3} - 1$ |
| $1$ |
$3$ |
$(1,3,5)(2,6,4)$ |
$-\zeta_{3} - 1$ |
$\zeta_{3}$ |
| $1$ |
$6$ |
$(1,2,5,4,3,6)$ |
$\zeta_{3} + 1$ |
$-\zeta_{3}$ |
| $1$ |
$6$ |
$(1,6,3,4,5,2)$ |
$-\zeta_{3}$ |
$\zeta_{3} + 1$ |
The blue line marks the conjugacy class containing complex conjugation.