Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 41 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 18 + 38\cdot 41 + 9\cdot 41^{2} + 36\cdot 41^{3} + 39\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 20 + 40\cdot 41 + 20\cdot 41^{2} + 5\cdot 41^{3} + 28\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 21 + 9\cdot 41 + 16\cdot 41^{2} + 20\cdot 41^{3} + 32\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 24 + 34\cdot 41 + 34\cdot 41^{2} + 19\cdot 41^{3} + 22\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,4,3,2)$ |
| $(1,3)(2,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$1$ |
$1$ |
| $1$ |
$2$ |
$(1,3)(2,4)$ |
$-1$ |
$-1$ |
| $1$ |
$4$ |
$(1,4,3,2)$ |
$\zeta_{4}$ |
$-\zeta_{4}$ |
| $1$ |
$4$ |
$(1,2,3,4)$ |
$-\zeta_{4}$ |
$\zeta_{4}$ |
The blue line marks the conjugacy class containing complex conjugation.