Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 13 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 6 + 5\cdot 13 + 12\cdot 13^{2} + 13^{3} + 4\cdot 13^{4} + 12\cdot 13^{5} +O\left(13^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 10 + 2\cdot 13 + 3\cdot 13^{2} + 3\cdot 13^{4} + 6\cdot 13^{5} +O\left(13^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 11 + 4\cdot 13 + 10\cdot 13^{2} + 10\cdot 13^{3} + 5\cdot 13^{4} + 7\cdot 13^{5} +O\left(13^{ 6 }\right)$ |
Generators of the action on the roots
$ r_{ 1 }, r_{ 2 }, r_{ 3 } $
Character values on conjugacy classes
| Size | Order | Action on
$ r_{ 1 }, r_{ 2 }, r_{ 3 } $
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$1$ |
$1$ |
| $1$ |
$3$ |
$(1,2,3)$ |
$\zeta_{3}$ |
$-\zeta_{3} - 1$ |
| $1$ |
$3$ |
$(1,3,2)$ |
$-\zeta_{3} - 1$ |
$\zeta_{3}$ |
The blue line marks the conjugacy class containing complex conjugation.