show · mf.bianchi.bianchicongruencesubgroup all knowls · up · search:

Let $K$ be an imaginary quadratic field with ring of integers $\mathcal{O}_K$. For a nonzero ideal $\mathfrak{N}$ of $\mathcal{O}_K$, the principal congruence subgroup of level $\mathfrak{N}$ is $$\Gamma(\mathfrak{N}) = \{\gamma \in \textrm{PSL}_2(\mathcal{O}_K) : \gamma\equiv \pm 1 \!\! \pmod{\mathfrak{N}} \}.$$ A subgroup of $\textrm{PSL}_2(\mathcal{O}_K)$ is called a congruence subgroup if it contains a principal congruence subgroup.

Knowl status:
  • Review status: reviewed
  • Last edited by John Voight on 2019-04-30 23:40:20
Referred to by:
History: (expand/hide all) Differences (show/hide)