An L-function has an Euler product of the form
$L(s) = \prod_p L_p(p^{-s})^{-1}$
where $L_p(x) = 1 + a_p x + \ldots + (-1)^d \chi(p) x^d$. The character $\chi$ is a Dirichlet character mod $N$ and is called **central character** of the L-function.
Here, $N$ is the conductor of $L$.

**Authors:**

**Knowl status:**

- Review status: reviewed
- Last edited by Stephan Ehlen on 2019-04-30 09:50:37

**Referred to by:**

- lmfdb/lfunctions/templates/Degree2.html (line 81)
- lmfdb/lfunctions/templates/Degree3.html (line 70)
- lmfdb/lfunctions/templates/Degree4.html (line 83)
- lmfdb/lfunctions/templates/Lfunction.html (line 126)
- lmfdb/lfunctions/templates/yamltotable2.pl (line 51)
- lmfdb/lfunctions/templates/yamltotable3.pl (line 46)
- lmfdb/lfunctions/templates/yamltotable4.pl (line 51)

**History:**(expand/hide all)

- 2019-04-30 09:50:37 by Stephan Ehlen (Reviewed)
- 2019-04-30 09:48:44 by Stephan Ehlen
- 2019-04-30 09:48:30 by Stephan Ehlen
- 2015-07-27 17:04:05 by Patrick Kühn

**Differences**(show/hide)