show · lf.galois_mean_slope all knowls · up · search:

Let $K$ be a finite Galois extension of $\Q_p$ for some prime $p$. Its Galois mean slope is the nonnegative rational number $\alpha$ such that the discriminant ideal for $K$ over $\Q_p$ is $(p^{[K:\Q_p]\cdot \alpha})$.

The Galois mean slope can be computed as a weighted average of the wild slopes and tame degree of $K$.

Knowl status:
  • Review status: reviewed
  • Last edited by David Roberts on 2019-04-30 18:03:54
Referred to by:
History: (expand/hide all) Differences (show/hide)