show · group.subgroup.diagram.lmfdb all knowls · up · search:

If $G$ is a group, its subgroup diagram is the Hasse diagram for the set of subgroups of $G$ under inclusion. Generally, subgroups of the same order are drawn at the same height in the diagram.

Subgroup diagrams in the LMFDB are different from typical subgroup diagrams in that it is the Hasse diagram on the set of conjugacy classes of subgroups ordered by inclusion. The number of subgroups in each conjugacy class is given as a left subscript if it is bigger then one. Hence, normal subgroups are those which have no left subscripts.

The subgroups can be dragged to make it so that one can see parts of the diagram more clearly.

Clicking on a subgroup will highlight it, and display information about the subgroup below the diagram. Hovering the mouse over a subgroup anywhere on the page will cause all instances of that subgroup to have a highlit background throughout the page.

Authors:
Knowl status:
  • Review status: beta
  • Last edited by John Jones on 2019-07-01 20:02:31
Referred to by:

Not referenced anywhere at the moment.

History: (expand/hide all) Differences (show/hide)