show · group.sp2gr.gamma0 all knowls · up · search:

The group $\Gamma_0(N)$ in degree $g$ is a subgroup of the integral symplectic group $\operatorname{Sp}(2g,{\Bbb Z})$, defined by $$\Gamma_0(N)=\left\{ \begin{pmatrix}A&B\\C&D\end{pmatrix}\in \operatorname{Sp}(2g,{\Bbb Z}) : C \equiv 0 \pmod N \right\}.$$

Authors:
Knowl status:
  • Review status: beta
  • Last edited by Alex J. Best on 2018-12-13 14:19:57
Referred to by:
History: (expand/hide all)