show · ec.q.special_value all knowls · up · search:

For elliptic curves over $\Q$, a natural normalization for its L-function is the one that yields a functional equation $s\leftrightarrow 2-s.$ This is known as the arithmetic normalization, because the the Dirichlet coefficients are rational integers. We emphasize that the arithmetic normalization is being used by writing the L-function as $L(E,s)$. In this notation, the central point is at $s=1.$ The special value is the first non-zero value among $L(E,1), L'(E,1), L''(E,1), \ldots $

Authors:
Knowl status:
  • Review status: reviewed
  • Last edited by John Jones on 2018-06-19 15:38:28
Referred to by:
History: (expand/hide all) Differences (show/hide)