Learn more

Note: Search results may be incomplete due to uncomputed quantities: jacobian_count (2316480 objects)

Refine search


Results (12 matches)

  displayed columns for results
Label Dimension Base field L-polynomial $p$-rank Number fields Galois groups Isogeny factors
2.8.ak_bp $2$ $\F_{2^{3}}$ $( 1 - 5 x + 8 x^{2} )^{2}$ $2$ \(\Q(\sqrt{-7}) \) $C_2$
2.8.aj_bk $2$ $\F_{2^{3}}$ $( 1 - 5 x + 8 x^{2} )( 1 - 4 x + 8 x^{2} )$ $1$ \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-1}) \) $C_2$, $C_2$
2.8.ah_bc $2$ $\F_{2^{3}}$ $( 1 - 4 x + 8 x^{2} )( 1 - 3 x + 8 x^{2} )$ $1$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-23}) \) $C_2$, $C_2$
2.8.ab_ah $2$ $\F_{2^{3}}$ $1 - x - 7 x^{2} - 8 x^{3} + 64 x^{4}$ $2$ \(\Q(\sqrt{-3}, \sqrt{-31})\) $C_2^2$
2.8.ab_q $2$ $\F_{2^{3}}$ $( 1 - x + 8 x^{2} )( 1 + 8 x^{2} )$ $1$ \(\Q(\sqrt{-31}) \), \(\Q(\sqrt{-2}) \) $C_2$, $C_2$
2.8.a_ap $2$ $\F_{2^{3}}$ $1 - 15 x^{2} + 64 x^{4}$ $2$ \(\Q(i, \sqrt{31})\) $C_2^2$
2.8.a_ai $2$ $\F_{2^{3}}$ $1 - 8 x^{2} + 64 x^{4}$ $0$ \(\Q(\sqrt{-2}, \sqrt{-3})\) $C_2^2$
2.8.b_ah $2$ $\F_{2^{3}}$ $1 + x - 7 x^{2} + 8 x^{3} + 64 x^{4}$ $2$ \(\Q(\sqrt{-3}, \sqrt{-31})\) $C_2^2$
2.8.b_q $2$ $\F_{2^{3}}$ $( 1 + 8 x^{2} )( 1 + x + 8 x^{2} )$ $1$ \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-31}) \) $C_2$, $C_2$
2.8.h_bc $2$ $\F_{2^{3}}$ $( 1 + 3 x + 8 x^{2} )( 1 + 4 x + 8 x^{2} )$ $1$ \(\Q(\sqrt{-23}) \), \(\Q(\sqrt{-1}) \) $C_2$, $C_2$
2.8.j_bk $2$ $\F_{2^{3}}$ $( 1 + 4 x + 8 x^{2} )( 1 + 5 x + 8 x^{2} )$ $1$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-7}) \) $C_2$, $C_2$
2.8.k_bp $2$ $\F_{2^{3}}$ $( 1 + 5 x + 8 x^{2} )^{2}$ $2$ \(\Q(\sqrt{-7}) \) $C_2$
  displayed columns for results