Invariants
Base field: | $\F_{3}$ |
Dimension: | $5$ |
L-polynomial: | $( 1 + 3 x + 3 x^{2} )( 1 - 5 x + 11 x^{2} - 14 x^{3} + 17 x^{4} - 42 x^{5} + 99 x^{6} - 135 x^{7} + 81 x^{8} )$ |
$1 - 2 x - x^{2} + 4 x^{3} + 8 x^{4} - 33 x^{5} + 24 x^{6} + 36 x^{7} - 27 x^{8} - 162 x^{9} + 243 x^{10}$ | |
Frobenius angles: | $\pm0.0585233652746$, $\pm0.211357390051$, $\pm0.373008092126$, $\pm0.753920350296$, $\pm0.833333333333$ |
Angle rank: | $4$ (numerical) |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable.
Newton polygon
$p$-rank: | $4$ |
Slopes: | $[0, 0, 0, 0, 1/2, 1/2, 1, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $91$ | $36855$ | $13632892$ | $5042685375$ | $638196694681$ |
Point counts of the (virtual) curve
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $2$ | $4$ | $26$ | $112$ | $177$ | $760$ | $2179$ | $6536$ | $19781$ | $58099$ |
Jacobians and polarizations
This isogeny class is principally polarizable, but it is unknown whether it contains a Jacobian.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{3^{6}}$.
Endomorphism algebra over $\F_{3}$The isogeny class factors as 1.3.d $\times$ 4.3.af_l_ao_r and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{3^{6}}$ is 1.729.cc $\times$ 4.729.ay_ceo_abigz_crind. The endomorphism algebra for each factor is:
|
- Endomorphism algebra over $\F_{3^{2}}$
The base change of $A$ to $\F_{3^{2}}$ is 1.9.ad $\times$ 4.9.ad_p_abs_dz. The endomorphism algebra for each factor is: - Endomorphism algebra over $\F_{3^{3}}$
The base change of $A$ to $\F_{3^{3}}$ is 1.27.a $\times$ 4.27.ac_ak_cd_wd. The endomorphism algebra for each factor is:
Base change
This is a primitive isogeny class.