Properties

Label 5.2.ai_bj_ady_ik_ano
Base Field $\F_{2}$
Dimension $5$
Ordinary No
$p$-rank $2$
Contains a Jacobian No

Learn more about

Invariants

Base field:  $\F_{2}$
Dimension:  $5$
Weil polynomial:  $( 1 - x + 2 x^{2} )^{2}( 1 - 2 x + 2 x^{2} )^{3}$
Frobenius angles:  $\pm0.25$, $\pm0.25$, $\pm0.25$, $\pm0.384973271919$, $\pm0.384973271919$
Angle rank:  $1$ (numerical)

Newton polygon

$p$-rank:  $2$
Slopes:  $[0, 0, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1, 1]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 4 8000 430612 4000000 33357764 861224000 29094575108 944784000000 29860340011684 1009072361000000

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -5 11 31 39 35 47 107 223 427 911

Decomposition

1.2.ac 3 $\times$ 1.2.ab 2

Base change

This is a primitive isogeny class.