Properties

Label 5.2.ai_bi_ads_hs_ami
Base Field $\F_{2}$
Dimension $5$
$p$-rank $0$
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{2}$
Dimension:  $5$
Weil polynomial:  $( 1 + 2 x^{2} )( 1 - 2 x + 2 x^{2} )^{4}$
Frobenius angles:  $\pm0.25$, $\pm0.25$, $\pm0.25$, $\pm0.25$, $\pm0.5$
Angle rank:  $0$ (numerical)

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 3 5625 257049 3515625 93250113 1445900625 21033109569 576650390625 27459819020673 1202052237890625

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -5 9 25 41 65 81 65 97 385 1089

Decomposition

1.2.ac 4 $\times$ 1.2.a

Base change

This is a primitive isogeny class.