Properties

Label 5.2.ah_z_acg_dy_afw
Base Field $\F_{2}$
Dimension $5$
$p$-rank $2$
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{2}$
Dimension:  $5$
Weil polynomial:  $( 1 - 2 x + 2 x^{2} )^{3}( 1 - x + x^{2} - 2 x^{3} + 4 x^{4} )$
Frobenius angles:  $\pm0.197201053961$, $\pm0.25$, $\pm0.25$, $\pm0.25$, $\pm0.652365995579$
Angle rank:  $2$ (numerical)

Newton polygon

$p$-rank:  $2$
Slopes:  $[0, 0, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1, 1]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 3 3375 79092 7171875 124264563 1067742000 26487260229 799929421875 25107150425292 1065956954484375

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -4 6 17 50 76 63 94 178 341 966

Decomposition

1.2.ac 3 $\times$ 2.2.ab_b

Base change

This is a primitive isogeny class.