Properties

Label 5.2.ah_bb_act_fm_aiq
Base Field $\F_{2}$
Dimension $5$
$p$-rank $3$
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{2}$
Dimension:  $5$
Weil polynomial:  $( 1 - x + 2 x^{2} )( 1 - 2 x + 2 x^{2} )^{2}( 1 - 2 x + 3 x^{2} - 4 x^{3} + 4 x^{4} )$
Frobenius angles:  $\pm0.174442860055$, $\pm0.25$, $\pm0.25$, $\pm0.384973271919$, $\pm0.546783656212$
Angle rank:  $3$ (numerical)

Newton polygon

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1/2, 1/2, 1/2, 1/2, 1, 1, 1]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 4 5600 146692 2240000 65162284 1437581600 29094575108 953648640000 33577931849644 1028586652940000

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -4 10 20 30 56 82 108 222 488 930

Decomposition

1.2.ac 2 $\times$ 1.2.ab $\times$ 2.2.ac_d

Base change

This is a primitive isogeny class.