Properties

Label 5.2.ag_r_abg_bx_acs
Base Field $\F_{2}$
Dimension $5$
Ordinary No
$p$-rank $4$
Contains a Jacobian No

Learn more about

Invariants

Base field:  $\F_{2}$
Dimension:  $5$
Weil polynomial:  $( 1 - 2 x + 2 x^{2} )( 1 - 3 x + 5 x^{2} - 6 x^{3} + 4 x^{4} )( 1 - x - x^{2} - 2 x^{3} + 4 x^{4} )$
Frobenius angles:  $\pm0.0516399385854$, $\pm0.123548644961$, $\pm0.25$, $\pm0.456881978294$, $\pm0.718306605252$
Angle rank:  $2$ (numerical)

Newton polygon

$p$-rank:  $4$
Slopes:  $[0, 0, 0, 0, 1/2, 1/2, 1, 1, 1, 1]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 1 665 15808 1107225 29590151 1177379840 45108385589 917031425625 32442795501376 1266342321457325

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -3 3 3 19 27 69 165 211 471 1143

Decomposition

1.2.ac $\times$ 2.2.ad_f $\times$ 2.2.ab_ab

Base change

This is a primitive isogeny class.