Properties

Label 5.2.ag_r_abb_ba_ay
Base Field $\F_{2}$
Dimension $5$
$p$-rank $3$
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{2}$
Dimension:  $5$
Weil polynomial:  $( 1 - 2 x + 2 x^{2} )^{2}( 1 - 2 x + x^{2} + x^{3} + 2 x^{4} - 8 x^{5} + 8 x^{6} )$
Frobenius angles:  $\pm0.132091856901$, $\pm0.25$, $\pm0.25$, $\pm0.309487084859$, $\pm0.780459932197$
Angle rank:  $3$ (numerical)

Newton polygon

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1/2, 1/2, 1/2, 1/2, 1, 1, 1]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 3 1575 111033 6181875 44988603 1224138825 27759090936 869771266875 38981319187473 1175636550020625

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -3 3 18 47 42 72 102 199 567 1068

Decomposition

1.2.ac 2 $\times$ 3.2.ac_b_b

Base change

This is a primitive isogeny class.