Invariants
| Base field: | $\F_{3}$ |
| Dimension: | $5$ |
| L-polynomial: | $( 1 + x + 3 x^{2} )( 1 + 2 x + 3 x^{2} )( 1 + 3 x + 3 x^{2} )( 1 + 3 x^{2} )^{2}$ |
| $1 + 6 x + 26 x^{2} + 78 x^{3} + 189 x^{4} + 360 x^{5} + 567 x^{6} + 702 x^{7} + 702 x^{8} + 486 x^{9} + 243 x^{10}$ | |
| Frobenius angles: | $\pm0.5$, $\pm0.5$, $\pm0.593214749339$, $\pm0.695913276015$, $\pm0.833333333333$ |
| Angle rank: | $2$ (numerical) |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable.
Newton polygon
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3360$ | $322560$ | $7902720$ | $2683699200$ | $873991456800$ |
Point counts of the (virtual) curve
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $10$ | $26$ | $10$ | $62$ | $250$ | $836$ | $2110$ | $6398$ | $19630$ | $59786$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains no Jacobian of a hyperelliptic curve, but it is unknown whether it contains a Jacobian of a non-hyperelliptic curve.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{3^{6}}$.
Endomorphism algebra over $\F_{3}$The isogeny class factors as 1.3.a 2 $\times$ 1.3.b $\times$ 1.3.c $\times$ 1.3.d and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
|
The base change of $A$ to $\F_{3^{6}}$ is 1.729.abu $\times$ 1.729.ak $\times$ 1.729.cc 3 . The endomorphism algebra for each factor is:
|
- Endomorphism algebra over $\F_{3^{2}}$
The base change of $A$ to $\F_{3^{2}}$ is 1.9.ad $\times$ 1.9.c $\times$ 1.9.f $\times$ 1.9.g 2 . The endomorphism algebra for each factor is: - 1.9.ad : \(\Q(\sqrt{-3}) \).
- 1.9.c : \(\Q(\sqrt{-2}) \).
- 1.9.f : \(\Q(\sqrt{-11}) \).
- 1.9.g 2 : $\mathrm{M}_{2}(B)$, where $B$ is the quaternion algebra over \(\Q\) ramified at $3$ and $\infty$.
- Endomorphism algebra over $\F_{3^{3}}$
The base change of $A$ to $\F_{3^{3}}$ is 1.27.ak $\times$ 1.27.ai $\times$ 1.27.a 3 . The endomorphism algebra for each factor is: - 1.27.ak : \(\Q(\sqrt{-2}) \).
- 1.27.ai : \(\Q(\sqrt{-11}) \).
- 1.27.a 3 : $\mathrm{M}_{3}($\(\Q(\sqrt{-3}) \)$)$
Base change
This is a primitive isogeny class.