Properties

Label 4.5.am_cp_ajc_xg
Base Field $\F_{5}$
Dimension $4$
$p$-rank $4$
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{5}$
Dimension:  $4$
Weil polynomial:  $( 1 - 4 x + 5 x^{2} )^{2}( 1 - 4 x + 9 x^{2} - 20 x^{3} + 25 x^{4} )$
Frobenius angles:  $\pm0.103885594917$, $\pm0.14758361765$, $\pm0.14758361765$, $\pm0.516810247272$
Angle rank:  $3$ (numerical)

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $4$
Slopes:  $[0, 0, 0, 0, 1, 1, 1, 1]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 44 259600 206947136 144877568000 101344979199244 62729484748902400 37865824253945399756 23405215805135290368000 14603329963432731221966144 9106643109419934768670090000

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -6 16 102 592 3314 16426 79402 392672 1960014 9778176

Decomposition

1.5.ae 2 $\times$ 2.5.ae_j

Base change

This is a primitive isogeny class.