Properties

Label 4.5.al_ch_ahy_ui
Base Field $\F_{5}$
Dimension $4$
$p$-rank $4$
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{5}$
Dimension:  $4$
Weil polynomial:  $( 1 - 4 x + 5 x^{2} )( 1 - 3 x + 5 x^{2} )( 1 - 4 x + 9 x^{2} - 20 x^{3} + 25 x^{4} )$
Frobenius angles:  $\pm0.103885594917$, $\pm0.14758361765$, $\pm0.265942140215$, $\pm0.516810247272$
Angle rank:  $4$ (numerical)

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $4$
Slopes:  $[0, 0, 0, 0, 1, 1, 1, 1]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 66 350460 244265472 152800560000 100743619235226 61511282901319680 37354253994140819802 23273453905497005760000 14585742269241438927684096 9108999473489266863893406300

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -5 23 124 627 3295 16118 78339 390467 1957660 9780703

Decomposition

1.5.ae $\times$ 1.5.ad $\times$ 2.5.ae_j

Base change

This is a primitive isogeny class.