Properties

Label 4.3.al_cf_agy_oo
Base Field $\F_{3}$
Dimension $4$
$p$-rank $1$
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{3}$
Dimension:  $4$
Weil polynomial:  $( 1 - 2 x + 3 x^{2} )( 1 - 3 x + 3 x^{2} )^{3}$
Frobenius angles:  $\pm0.166666666667$, $\pm0.166666666667$, $\pm0.166666666667$, $\pm0.304086723985$
Angle rank:  $1$ (numerical)

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 2 4116 834176 72342816 4816407662 329612967936 24554788591118 1913695797127296 151574224374586496 12107028012374894676

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -7 3 38 123 323 846 2345 6771 19874 58803

Decomposition

1.3.ad 3 $\times$ 1.3.ac

Base change

This is a primitive isogeny class.