Properties

Label 4.3.aj_bo_aek_ix
Base Field $\F_{3}$
Dimension $4$
$p$-rank $2$
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{3}$
Dimension:  $4$
Weil polynomial:  $( 1 - 3 x + 3 x^{2} )^{2}( 1 - 3 x + 7 x^{2} - 9 x^{3} + 9 x^{4} )$
Frobenius angles:  $\pm0.166666666667$, $\pm0.166666666667$, $\pm0.227267020856$, $\pm0.464830336654$
Angle rank:  $2$ (numerical)

Newton polygon

$p$-rank:  $2$
Slopes:  $[0, 0, 1/2, 1/2, 1/2, 1/2, 1, 1]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 5 7105 827120 54033525 4553342000 357302606080 25077434754755 1831615948705725 146237929245768080 12037965374815072000

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -5 9 37 101 310 903 2389 6485 19171 58464

Decomposition

1.3.ad 2 $\times$ 2.3.ad_h

Base change

This is a primitive isogeny class.