Properties

Label 4.3.ah_y_acd_dy
Base Field $\F_{3}$
Dimension $4$
$p$-rank $3$
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{3}$
Dimension:  $4$
Weil polynomial:  $( 1 - 3 x + 3 x^{2} )( 1 - 2 x + 3 x^{2} )( 1 - 2 x + 2 x^{2} - 6 x^{3} + 9 x^{4} )$
Frobenius angles:  $\pm0.116139763599$, $\pm0.166666666667$, $\pm0.304086723985$, $\pm0.616139763599$
Angle rank:  $2$ (numerical)

Newton polygon

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1/2, 1/2, 1, 1, 1]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 8 6720 463904 55910400 4528043608 285245291520 23085014729848 1958316775833600 153402593732216864 12206659206053928000

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -3 9 24 101 307 738 2209 6925 20112 59289

Decomposition

1.3.ad $\times$ 1.3.ac $\times$ 2.3.ac_c

Base change

This is a primitive isogeny class.