Properties

Label 4.3.ah_y_acc_dv
Base Field $\F_{3}$
Dimension $4$
$p$-rank $1$
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{3}$
Dimension:  $4$
Weil polynomial:  $( 1 - 3 x + 3 x^{2} )^{2}( 1 - x + 3 x^{2} - 3 x^{3} + 9 x^{4} )$
Frobenius angles:  $\pm0.166666666667$, $\pm0.166666666667$, $\pm0.268536328535$, $\pm0.622727850897$
Angle rank:  $2$ (numerical)

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 9 7497 529200 67150629 5192572464 303286636800 23234300923311 1904096980028061 148884520287358800 12037866219491196672

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -3 9 27 117 342 783 2223 6741 19521 58464

Decomposition

1.3.ad 2 $\times$ 2.3.ab_d

Base change

This is a primitive isogeny class.