Properties

Label 4.3.ah_x_aby_dm
Base Field $\F_{3}$
Dimension $4$
$p$-rank $3$
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{3}$
Dimension:  $4$
Weil polynomial:  $( 1 - 3 x + 3 x^{2} )( 1 - 2 x + 3 x^{2} )( 1 - 2 x + x^{2} - 6 x^{3} + 9 x^{4} )$
Frobenius angles:  $\pm0.0292466093486$, $\pm0.166666666667$, $\pm0.304086723985$, $\pm0.637420057318$
Angle rank:  $1$ (numerical)

Newton polygon

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1/2, 1/2, 1, 1, 1]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 6 4788 344736 48301344 3824938986 250890587136 21939467263818 1876183595395200 148662203360249376 12107841369080712948

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -3 7 18 91 267 646 2097 6643 19494 58807

Decomposition

1.3.ad $\times$ 1.3.ac $\times$ 2.3.ac_b

Base change

This is a primitive isogeny class.