Properties

Label 4.3.ah_u_abe_bn
Base Field $\F_{3}$
Dimension $4$
$p$-rank $2$
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{3}$
Dimension:  $4$
Weil polynomial:  $( 1 - 3 x + 3 x^{2} )^{2}( 1 - x - x^{2} - 3 x^{3} + 9 x^{4} )$
Frobenius angles:  $\pm0.126866938441$, $\pm0.166666666667$, $\pm0.166666666667$, $\pm0.718153680921$
Angle rank:  $2$ (numerical)

Newton polygon

$p$-rank:  $2$
Slopes:  $[0, 0, 1/2, 1/2, 1/2, 1/2, 1, 1]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 5 3185 356720 67283125 4435836400 330847811840 26727999291355 1913590813168125 151807494193431440 12208565650804140800

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -3 1 15 117 302 847 2531 6773 19905 59296

Decomposition

1.3.ad 2 $\times$ 2.3.ab_ab

Base change

This is a primitive isogeny class.