Properties

Label 4.3.ah_t_ay_y
Base Field $\F_{3}$
Dimension $4$
$p$-rank $2$
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{3}$
Dimension:  $4$
Weil polynomial:  $( 1 - 3 x + 3 x^{2} )^{2}( 1 - x - 2 x^{2} - 3 x^{3} + 9 x^{4} )$
Frobenius angles:  $\pm0.073451917328$, $\pm0.166666666667$, $\pm0.166666666667$, $\pm0.740118583995$
Angle rank:  $1$ (numerical)

Newton polygon

$p$-rank:  $2$
Slopes:  $[0, 0, 1/2, 1/2, 1/2, 1/2, 1, 1]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 4 2352 313600 58828224 3833913964 318637670400 25583626756636 1867179827525376 152206785136134400 12155794379587396272

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -3 -1 12 107 267 818 2433 6611 19956 59039

Decomposition

1.3.ad 2 $\times$ 2.3.ab_ac

Base change

This is a primitive isogeny class.