Properties

Label 4.3.ah_ba_acq_ff
Base Field $\F_{3}$
Dimension $4$
$p$-rank $3$
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{3}$
Dimension:  $4$
Weil polynomial:  $( 1 - 3 x + 3 x^{2} )( 1 - x + 3 x^{2} )( 1 - 3 x + 5 x^{2} - 9 x^{3} + 9 x^{4} )$
Frobenius angles:  $\pm0.0975263560046$, $\pm0.166666666667$, $\pm0.406785250661$, $\pm0.527857038681$
Angle rank:  $3$ (numerical)

Newton polygon

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1/2, 1/2, 1, 1, 1]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 9 8505 553392 33722325 3604685904 326324194560 24620803914051 1908965547359325 152584301835349776 12173484255729350400

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -3 13 27 61 252 835 2349 6757 20007 59128

Decomposition

1.3.ad $\times$ 1.3.ab $\times$ 2.3.ad_f

Base change

This is a primitive isogeny class.