Properties

Label 4.2.ae_i_am_r
Base Field $\F_{2}$
Dimension $4$
$p$-rank $4$
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{2}$
Dimension:  $4$
Weil polynomial:  $1 - 4 x + 8 x^{2} - 12 x^{3} + 17 x^{4} - 24 x^{5} + 32 x^{6} - 32 x^{7} + 16 x^{8}$
Frobenius angles:  $\pm0.0755571399449$, $\pm0.203216343788$, $\pm0.424442860055$, $\pm0.703216343788$
Angle rank:  $2$ (numerical)
Number field:  8.0.18939904.2
Galois group:  $D_4\times C_2$

This isogeny class is simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $4$
Slopes:  $[0, 0, 0, 0, 1, 1, 1, 1]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 2 292 2402 85264 930082 17183908 403078034 4278206464 59240758994 1097334925732

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -1 5 5 21 29 65 181 253 437 1025

Decomposition

This is a simple isogeny class.

Base change

This is a primitive isogeny class.