Properties

Label 4.2.a_a_ac_a
Base field $\F_{2}$
Dimension $4$
$p$-rank $0$
Ordinary no
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Downloads

Learn more

Invariants

Base field:  $\F_{2}$
Dimension:  $4$
L-polynomial:  $1 - 2 x^{3} - 4 x^{5} + 16 x^{8}$
Frobenius angles:  $\pm0.0640918585257$, $\pm0.393625989811$, $\pm0.651207033805$, $\pm0.823657974581$
Angle rank:  $4$ (numerical)
Number field:  8.0.5198736512.1
Galois group:  $C_2 \wr S_4$
Jacobians:  $1$
Cyclic group of points:    yes

This isogeny class is simple and geometrically simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $0$
Slopes:  $[1/3, 1/3, 1/3, 1/2, 1/2, 2/3, 2/3, 2/3]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $11$ $253$ $1727$ $74129$ $537581$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $3$ $5$ $3$ $17$ $13$ $53$ $129$ $321$ $489$ $945$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobian of 1 curve (which is hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2}$.

Endomorphism algebra over $\F_{2}$
The endomorphism algebra of this simple isogeny class is 8.0.5198736512.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
4.2.a_a_c_a$2$4.4.a_a_ae_q