Properties

Label 3.9.an_cz_akw
Base Field $\F_{3^2}$
Dimension $3$
$p$-rank $2$
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{3^2}$
Dimension:  $3$
Weil polynomial:  $( 1 - 3 x )^{2}( 1 - 7 x + 26 x^{2} - 63 x^{3} + 81 x^{4} )$
Frobenius angles:  $0.0$, $0.0$, $\pm0.122441590128$, $\pm0.422937410221$
Angle rank:  $2$ (numerical)

Newton polygon

$p$-rank:  $2$
Slopes:  $[0, 0, 1/2, 1/2, 1, 1]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 152 432896 366619136 271512371200 203209984268632 150008255511855104 109508345914914652312 79775092984544545996800 58144586861456857068988928 42389737113060192408133112576

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -3 67 690 6303 58277 531136 4786877 43051391 387386178 3486667507

Decomposition

1.9.ag $\times$ 2.9.ah_ba

Base change

This is a primitive isogeny class.