Properties

Label 3.9.am_cs_ajy
Base Field $\F_{3^2}$
Dimension $3$
$p$-rank $2$
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{3^2}$
Dimension:  $3$
Weil polynomial:  $( 1 - 3 x )^{2}( 1 - 6 x + 25 x^{2} - 54 x^{3} + 81 x^{4} )$
Frobenius angles:  $0.0$, $0.0$, $\pm0.236852280319$, $\pm0.414859841358$
Angle rank:  $2$ (numerical)

Newton polygon

$p$-rank:  $2$
Slopes:  $[0, 0, 1/2, 1/2, 1, 1]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 188 502336 396641648 278947180800 203967451571708 149770439336068096 109366813278572162396 79732233710646869836800 58134460640689886008999664 42387864102402505427688963136

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -2 78 748 6482 58498 530292 4780690 43028258 387318700 3486513438

Decomposition

1.9.ag $\times$ 2.9.ag_z

Base change

This is a primitive isogeny class.